An operator splitting scheme for the stream-function formulation of unsteady Navier-Stokes equations

نویسنده

  • C. I. Christov
چکیده

A fictitious time is introduced into the unsteady equation of the stream function rendering it into a higher-order ultra-parabolic equation. The convergence with respect to the fictitious time (we call the latter ‘internal iterations’) allows one to obtain fully implicit nonlinear scheme in full time steps for the physical-time variable. For particular choice of the artificial time increment, the scheme in full time steps is of second-order of approximation. For the solution of the internal iteration, a fractional-step scheme is proposed based on the splitting of the combination of the Laplace, bi-harmonic and advection operators. A judicious choice for the time staggering of the different parts of the nonlinear advective terms allows us to prove that the internal iterations are unconditionally stable and convergent. We assess the number of operations needed per time step and show computational effectiveness of the proposed scheme. We prove that when the internal iterations converge, the scheme is second-order in physical time and space, nonlinear, implicit and absolutely stable. The performance of the scheme is demonstrated for the flow created by oscillatory motion of the lid of a square cavity. All theoretical findings are demonstrated practically. Copyright q 2006 John Wiley & Sons, Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Alternating Direction Implicit Method for Modeling of Fluid Flow

This research includes of the numerical modeling of fluids in two-dimensional cavity. The cavity flow is an important theoretical problem. In this research, modeling was carried out based on an alternating direction implicit via Vorticity-Stream function formulation. It evaluates different Reynolds numbers and grid sizes. Therefore, for the flow field analysis and prove of the ability of the sc...

متن کامل

Aixsymmetric Stagnation Point Flow of a Viscous Fluid on a Moving Cylinder with Time Dependent Axial Velocity

The unsteady viscous flow in the vicinity of an axisymmetric stagnation point of an infinite moving cylinder with time-dependent axial velocity is investigated. The impinging free stream is steady with a strain rate k. An exact solution of the Navier-Stokes equations is derived in this problem. A reduction of these equations is obtained by use of appropriate transformations. The general self-si...

متن کامل

A comparative study between two numerical solutions of the Navier-Stokes equations

The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...

متن کامل

Integral Equation Methods for Unsteady Stokes Flow in Two Dimensions

We present an integral equation formulation for the unsteady Stokes equations in two dimensions. This problem is of interest in its own right, as a model for slow viscous flow, but perhaps more importantly, as an ingredient in the solution of the full, incompressible Navier-Stokes equations. Using the unsteady Green’s function, the velocity evolves analytically as a divergence-free vector field...

متن کامل

A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations

We present a high-order discontinuous Galerkin discretization of the unsteady incompressible Navier-Stokes equations in convection-dominated flows using triangular and tetrahedral meshes. The scheme is based on a semi-explicit temporal discretization with explicit treatment of the nonlinear term and implicit treatment of the Stokes operator. The nonlinear term is discretized in divergence form ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006